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Abstract

Authenticated data structures provide a model for data authentication, where answers to
queries contain extra information that can produce a cryptographic proof about the validity of
the answers. In this paper, we study the authentication cost that is associated with this model
when authentication is performed through hierarchical cryptographic hashing. We introduce
measures that precisely model the computational overhead that is introduced due to authenti-
cation. We study the theoretical limitations of the model for authenticated structures that solve
the dictionary problem of size n and prove (i) an intrinsic equivalence between authentication
through hashing and searching by comparison, (ii) a Ω(log n) lower bound for the authentication
cost and (iii) the optimality of tree structures. In view of the logarithmic lower bound, we (i)
analyze and study the performance of existing authenticated structures with O(log n) authen-
tication cost and (ii) describe a new authentication scheme based on skip-lists that achieves a
performance very close to the theoretically optimal. Through the relation between authentica-
tion cost and number of comparisons, we finally get a new skip list version achieving expected
performance that is very close to the theoretically optimal with respect to the logarithmic con-
stant. Namely, a search operation takes on average 1.25 log

2
n + O(1) comparisons, which must

be compared with the 1.5 log
2
n + O(1) previous best scheme.

Keywords Authenticated Data Structures, Data Authentication, Dictionary Problem, Skip
Lists

1 Introduction

The design and implementation of efficient data structures for various query problems has a long
history in computer science. Data structures are typically designed having as goal to organize
a collection of data, so that searching in the collection and answering queries about the data are
performed efficiently. Implicitly, the owner and the user of the data structure are assumed to be the
same entity. However, an important security problem arises when this assumption is abandoned.

With the advent of Web services and pervasive computing, a data structure can be controlled
by an entity different than the owner or the user of the data. Data replication applications achieve
computational efficiency by caching data at servers near users, but they present a major security
challenge. Namely, how can a user verify that the data items replicated at a server are the same
as the original ones from the data source? For example, stock quotes from the New York Stock
Exchange are distributed to brokerages and financial portals that provide quote services to their
customers. An investor that gets a stock quote from a web site would like to have a secure and
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efficient mechanism to verify that this quote is identical to the one that would be obtained by
querying directly the New York Stock Exchange.

A simple mechanism to achieve the authentication of replicated data consists of having the
source digitally sign each data item and replicating the signatures in addition to the data items
themselves. However, when data evolves rapidly over time, as is the case for the stock quote
application, this solution is inefficient.

Authenticated data structures are a model of computation where an untrusted directory (also
called responder) answer queries on a data structure on behalf of a trusted source and provides a
proof of the validity of the answer to the user. The data source ideally signs only a single digest of
the data. On a query, along with the answer, the signed digest and some information that relates
the answer to this digest are also given to the user and these are used for the answer verification.

In this paper, we study the computational and communication overhead of authentication on
the performance of a data structure. We focus on the dictionary problem, i.e., answering member-
ship queries on a set of elements. We model the authentication overhead so that all cost parameters
can be easily expressed. Using this model, we relate authentication by hashing to searching by com-
parisons and prove a logarithmic lower bound on the authentication overhead. We provide a novel
analysis of existing authentication schemes and design a new scheme that achieves authentication
overhead close to the theoretical optimal. Finally, through the relation between authentication and
search by comparisons, we present a new version of a skip list where on average searches can be
performed with log2 n + O(1) comparisons, which is optimal up to an additive constant term.

1.1 Model

The authenticated data structure model involves a structured collection S of objects (e.g., a set or
a graph) and three parties: the source, the directory, and the user (see Figure 1) . A repertoire
of query operations and optional update operations are assumed to be defined over S. The role of
each party is as follows:

• The source holds the original version of S. Whenever an update is performed on S, the
source produces update authentication information, which consists of a signed time-stamped
statement about the current version of S.

• The directory maintains a copy of S. It interacts with the source by receiving from the source
the updates performed on S together with the associated update authentication information.
The directory also interacts with the user by answering queries on S posed by the user. In
addition to the answer to a query, the directory returns answer authentication information,
which consists of (i) the latest update authentication information issued by the source; and
(ii) a proof of the answer.

• The user poses queries on S, but instead of contacting the source directly, it contacts the
directory. However, the user trusts the source and not the directory about S. Hence, it verifies
the answer from the directory using the associated answer authentication information.

The data structures used by the source and the directory to store collection S, together with the
algorithms for queries, updates, and verifications executed by the various parties, form what is
called an authenticated data structure.

In a practical deployment of an authenticated data structure, there would be several geographi-
cally distributed directories. Such a distribution scheme reduces latency, allows for load balancing,
and reduces the risk of denial-of-service attacks. Scalability is achieved by increasing the number
of directories, which do not require physical security since they are not trusted parties.
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Figure 1: The three-party authentication model.

1.2 Authentication Through Hashing

In this paper, we focus on authentication schemes that use a one-way, collision-resistant cryp-
tographic hash function, which will be referred to as hash function for brevity. The alternative
technique of one-way accumulators, used in [3, 10], is significantly less efficient in practice.

Let S be a data set owned by the source. We use a hash function h to produce a digest of
set S, which is signed by the source. The digest is computed through a hashing scheme over
a directed acyclic graph (DAG) that has a single sink node t and whose source nodes store the
elements of S (see [12], [16]). Each node u of G stores a label L(u) such that if u is a source
of G, then L(u) = h(e1, . . . , ep), where e1, . . . , ep are elements of S, else (u is not a source of G)
L(u) = h(L(w1), . . . , L(wl), e1, . . . , eq), where (w1, u), . . . , (wl, u) are edges of G and e1, . . . , eq are
elements of S (p, q and l are some constant integers). We view the label L(t) of the sink t of G as
the digest of S, which is computed via the above DAG G.

The authentication technique is based on the following general approach. The source and the
directory store identical copies of the data structure for S and maintain the same hashing scheme
on S. The source periodically signs the digest of S together with a timestamp and sends the signed
timestamped digest to the directory. When updates occur on S, they are sent to the directory
together with the new signed time-stamped digest. In this setting, the update authentication
information has constant size. When the user poses a query, the directory returns to the user (1)
the signed timestamped digest of S, (2) the answer to the query and (3) a proof consisting of a
small collection of labels from the hashing scheme (or of data elements if needed) that allows the
recomputation of the digest. The user validates the answer by recomputing the digest, checking
that it is equal to the signed one and verifying the signature of the digest; the total time spent for
this process is called the answer verification time.

1.3 Previous and Related Work

Throughout this section, we denote with n the size of the collection S maintained by an authenti-
cated data structure.

Early work on authenticated data structures was motivated by the certificate revocation problem
in public key infrastructure and focused on authenticated dictionaries, on which membership queries
are performed. The hash tree scheme introduced by Merkle [17, 18] can be used to implement a
static authenticated dictionary. A hash tree T for a set S stores cryptographic hashes of the
elements of S at the leaves of T and a value at each internal node, which is the result of computing
a cryptographic hash function on the values of its children. The hash tree uses linear space and has
O(log n) proof size, query time and verification time. A dynamic authenticated dictionary based
on hash trees that achieves O(log n) update time is described in [19]. A dynamic authenticated
dictionary that uses a hierarchical hashing technique over skip lists is presented in [9]. This data
structure also achieves O(log n) proof size, query time, update time and verification time. Other
schemes based on variations of hash trees have been proposed in [2, 6, 13]. The software architecture
and implementation of an authenticated dictionary based on skip lists is presented in [11].
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An alternative approach to the design of authenticated dictionary, based on the RSA accumu-
lator, is presented in [10]. This technique achieves constant proof size and verification time and
provides a tradeoff between the query and update times. For example, one can achieve O(

√
n)

query time and update time.
In [1], the notion of a persistent authenticated dictionary is introduced, where the user can

issue historical queries of the type “was element e in set S at time t”. A first step towards the
design of more general authenticated data structures (beyond dictionaries) is made in [5] with the
authentication of relational database operations and multidimensional orthogonal range queries.

In [16], a general method for designing authenticated data structures using hierarchical hashing
over a search graph is presented. This technique is applied to the design of static authenticated data
structures for pattern matching in tries and for orthogonal range searching in a multidimensional
set of points.

Efficient authenticated data structures supporting a variety of fundamental search problems on
graphs (e.g., path queries and biconnectivity queries) and geometric objects (e.g., point location
queries and segment intersection queries) are presented in [12]. This paper also provides a general
technique for authenticating data structures that follow the fractional cascading paradigm.

A distributed system realizing an authenticated dictionary, is described in [7]. This paper also
provides an empirical analysis of the performance of the system in various deployment scenarios.
The authentication of distributed data using web services and XML signatures is investigated in [20].
Prooflets, a scalable architecture for authenticating web content based on authenticated dictionaries,
are introduced in [24]. Work related to authenticated data structures includes [3, 4, 8, 14, 15].

Skip lists were introduced in [21, 22] where it is shown that the expected number of comparisons
for a search is (log2 n)/(p log2

1
p
) + O(1), where p is a probability parameter. An improved skip list

version gives 1−p2

p log
2

1

p

log2 n + O(1) expected comparisons.

1.4 Our Results

In this paper, we study the authentication overhead of authenticated data structures based on a
hashing scheme. Our main contributions are as follows.

1. We model the authentication cost using properties of the corresponding hashing scheme.
Using this model, we introduce precise measures of the computational overhead and we express
all the involved cost parameters that appear in the design of authenticated data structures
by these properties.

2. Focusing on authenticated dictionaries, we study the theoretical limits of authentication
through hashing. We deploy an equivalence between authentication through hashing and
searching by comparison and prove an Ω(log n) logarithmic lower bound for the authentica-
tion overhead of a dictionary. In [19] the open question of whether authenticated dictionaries
based on hash tables with roughly O(1) complexity can be constructed. We prove a negative
answer for this question in the hierarchical hashing model of authentication. Moreover, we
show that tree structures are optimal as hashing schemes. Also, we examine the case where
k hash values are signed by the source and show what is the optimal hashing scheme for this
scenario.

3. We design a new authentication scheme based on skip-lists and show that its performance is
close to the theoretical optimal.

4. Through the relation between authentication cost and number of comparisons we develop a
new version of skip list where the expected number of comparisons in a search is 1.25 log2 n+
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O(1), which is optimal up to an additive constant factor and improves the previous best
bound of 1.5 log2 n + O(1)n.

5. We analyze existing authentication schemes for the dictionary problem.

In Section 2, the authentication overhead of authenticated data structures is discussed and
we examine the cost components of authentication through hashing. In Section 3 we model the
authentication overhead of any authenticated data structure by introducing new metrics which
are related to specific properties of the hashing scheme. In Section 4 we describe the dictionary
problem and in Section 5 we examine the theoretical limits of authentication through hashing for
this problem. We prove a lower bound and that tree structures are better. In view of this results
we then focus on tree hashing schemes and study the authentication overhead. In Section 6 we
design and analyze a new authentication scheme based on skip lists and through this we describe
an improved version of skip list with respect to the expected number of comparisons. Section 7
studies existing structures with respect to the authentication cost.

2 The Authentication Overhead

In this section, we study the performance overhead due to authentication-related computations in an
authenticated data structure based on a hashing scheme. This overhead is called the authentication
overhead and consists of the following cost parameters.

1. Time Overhead: Includes any cost that adds to the time performance of the data structure.
The rehashing overhead is the time spend by the source or the directory to rehash over the
data in order to recompute the digest of the data structure after an update in the data set.
The query answering overhead is the extra time consumption for the directory to create the
answer authentication information. The verification time is the time spent by the user in
order to verify the answer given by the directory. In cases where the data structure is created
from scratch, we also consider the complete hashing overhead, i.e., the time to hash a given
data set using a given hashing scheme.

2. Communication Overhead: Corresponds to the communication cost introduced by the
model, i.e., the size of the update authentication information for the source-to-directory
communication and the size of the answer authentication information for the directory-to-
user communication. We are particularly interested in the size of the proof that is given to
the user which is part of the answer authentication information.

3. Storage Overhead: The total number of hash values used by the authentication scheme.

Even with the most efficient implementations, the time for computing a hash function is an
order of magnitude larger than the time for a comparison of basic number types (e.g., integers or
floating-point numbers). Thus, the rehashing overhead dominates the update time and the practical
performance of an authenticated data structure is characterized by the authentication overhead.
For efficient authenticated data structures we want to minimize the above cost parameters. We
will see that there is a major trade-off between time and communication overhead.

The authentication overhead heavily depends on the actual hashing scheme. Furthermore, for a
given hashing scheme, the authentication overhead is affected by the hash function h adopted and
by the mechanism used to realize a multivariate hash function from h.

2.1 Hashing Scheme

The major cost component of the authentication overhead is the hashing scheme G that is used to
produce the digest of the data structure. It must be chosen so that for any data element in the
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data structure an update or verification process has the minimum possible authentication cost.
In the literature, it has been always the case the hashing scheme G for a data structure DS

coincides with the data structure. This has the advantage that known efficient data structuring
techniques can be used to guarantee that the authentication cost that is involved will be asymp-
totically equal with the time performance of operations on the data structure.

However, we can consider the separation of the two above partially orcompletely. According to
the first technique, the hashing scheme does not have to completely overlap with the data structure
or can be defined independently of the data structure. In Section 6, we use this to derive a new
authentication scheme based on skip lists. By partially separating the hashing scheme G from
the data structure DS, in principle we can achieve less expensive hashing overhead and less used
storage by shortening the hashing scheme G, so that one hash value is stored for more than one
nodes of DS. We also gain flexibility in reducing or eliminating the query answering overhead by
carefully storing hash values of G in the appropriate nodes of DS. Finally, we can even completely
separate G from DS by storing G in its own data structure. This scheme may be more efficient in
the static case where no updates are performed.

2.2 Cryptographic Hash Functions

The basic cryptographic primitive for authenticated data structures is a collision resistant hash
function. A collision resistant hash function is a function h satisfying the following conditions:

1. The argument x can be of arbitrary length and the result h(x) has a fixed length of n bits
(with n ≥ 128...160).

2. The hash function must be one-way in the sense that given a y is in the image of h, it is
computationally hard to find a message x such that h(x) = y.

3. The hash function must be collision resistant : it is computationally hard to find distinct x
and y that hash to the same result, i.e., h(x) = h(y).

Most collision resistant hash functions used in practice are iterated hash functions. An iterated
hash function h is based on a compression function f that maps two input strings, a string of N
bits and a string of B bits, to an output string of N bits. The input string x is preprocessed using
a padding rule to a string y whose length is a multiple of B. If y = y1‖y2‖...‖yk, then h(x) = zk,
where zk is given by the following computation:

z0 = IV

z1 = f(z0, y1)

z2 = f(z1, y2)

...
...

...

zk = f(zk−1, yk).

Above, IV is an initial value N bit string that is public. The padding rule must be such that
it is unambiguous. To that end the length of the binary representation of the length |x| of x is
part of the padded string. Figure 2 gives a schematic description of the construction of a iterated
hash function h based on a compression function f . Given this model, we observe that the time
complexity for the application of h on x is in general proportional to |x| (since k is proportional to
|x|).
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Figure 2: The iterated hash function model.

In more detail, the time complexity of an iterated hash function h for the operation h(x) can
be described as a function of its input size ` = |x| by the function

T (`) = c1

(⌊

`

D

⌋

+ 1

)

+ c2,

where D is some constant less than N . By setting g(`) =
⌊

`
D

⌋

and c = c1 + c2, we have that

T (`) = c1g(`) + c.

Thus, T (`) is a staircase function and the following holds.

Lemma 1 The time complexity of an iterated hash function is a staircase function of its input size.

Note that up to bD−1
N

c hash values can be hashed in time c, and, in general, up to D − 1 bits can
be hashed in time c (the minimum hashing time). We define M to be bD−1

N
c.

Two candidate iterated hash functions that are commonly used in practice are MD5 and SHA-1.
For MD5, N = 128 and M = 3, for SHA-1, N = 160 and M = 2, while for both, B = 512 and
D = 448. Figure 3 depicts the time performance for MD5 and SHA-1.
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Figure 3: Hashing time of MD5 and SHA-1 as a function of the input size. Experimental results
showed that for MD5 c1 ' 0.0014895 and c2 ' 0.003837 and that for SHA-1 c1 ' 0.002822 and
c2 ' 0.001898 (all denote time in millisecond).
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2.3 Multivariate Hash Functions

Let u be a node of G having as children nodes w1, ..., wl. According to the hashing scheme, the
label L(u) equals the hash value h(L(w1), ..., L(wl), e1, ..., eq), where eis are data elements. That
is, h is assumed to operate on a finite number of binary strings. However, the hash function h
actually operates on one binary string rather than a set of a strings. Thus, we need multivariate
hash functions. Suppose we want to implement a d-variate hash function h.

The straightforward way to realize h(x1, ..., xd) is by using string concatenation, i.e., by hashing
the concatenated string x1‖...‖xd. We call this multivariate hash function the concatenation hash
function and we denote it as hC . But this is not the only possible possible. In general, we
can consider any realization where the concatenation hash function hC is applied more than once
recursively. Note that any realization can be computed in a unique way, since neither commutativity
nor associativity hold for hC . It should be noted that the collision-resistant property of such a
recursively defined hash function is preserved.

Two other implementations for multivariate hash functions are the following. The tree hash
function hT (x1, ..., xd) is implemented using recursively function hC and a binary hash tree on
top of elements xi with logarithmic in d associated time and communication cost. That is, hT

is implemented using hC and a hash tree on xis. This idea has been used in [16] and in [12].
Finally, the sequential hash function hS(x1, ..., xd) is implemented using hC as hS(x1, ..., xd) =
hC(hC(hC(x1, x2), x3), ..., xd). Equivalently, hS(x1, ..., xd) = hd, where hi = hC(hi−1, xi), 2 < i ≤ d,
and h2 = hC(x1, x2).

Any implementation follows an intrinsic time-communication trade-off.

Lemma 2 Time-communication trade-off for multivariate hash functions: time overhead always
increases by applying hC more than once and communication overhead is always possible to decrease
by applying hC more than once;

Proof Sketch: Time overhead increase follows by the definition of the time complexity of h and
the fact that for a, b positive numbers, 0 ≤ ba + bc − bac − bbc ≤ 1. For the decrease in the
communication overhead, consider the tree hash function hT . If it is implementing a d-variate hash
function the communication overhead is proportional to log d + 1 compared to the communication
overhead for hC which is proportional to d − 1. 2

The above lemma suggests the following. In terms of hashing overhead, h(x1, ..., xd) is optimally
implemented as h(x1‖...‖xd). In terms of communication overhead, a different implementation of
h, like hT can help. Which of the multivariate hash function should be used when a hashing scheme
G is already defined depends on G itself and on the degree d of the multivariate hash function. In
general, unless G has specific properties, a different one must be used for each node of G so that
the hashing overhead is minimized or the time-communication trade-off is appropriately tuned.
In the case where G is not “balanced”, we can use the biased multivariate hash function hB, so
that the cost is distributed so that commonly used queries have less communication cost. For
example, if u ∈ G has predecessor nodes v1, ..., vd in G, nodes vi are assigned a weight w(vi) and
hB is implemented so that the authentication cost is distributed inversely proportionally to weights
w(vi). However, we can limit our study only to the concatenation hash function hC and always
modify the hashing scheme G to accommodate the efficiency of a hash function implementation.

Lemma 3 Any alternative realization of a d-variate function h(x1‖...‖xd) based on the iterative
applications of hC can be expressed through a hashing scheme G.
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3 Two Metrics for Modeling the Authentication Overhead

We next introduce the concept of authentication cost, a pair of properties of the hashing scheme
that is used. The authentication cost consists of the following two components: the node size and
the degree size. Both components are simply properties of some connected subgraph of the hashing
scheme and capture the efficiency of the hashing scheme in terms of the authenticated overhead
that is added to the performance of the data structure. More importantly, for a given update or
verification operation, each cost parameter of the authentication overhead can be precisely expressed
as a linear combination of the node size and the degree size of some (corresponding to the operation)
subgraph of the used hashing scheme.

Let G be the hashing scheme that is used for the data structure DS. If u is a vertex of G, by
indeg(v) we denote the in-degree of vertex v, that is the number of predecessors of v in G. Let G′

be a connected subgraph of G. The two components of the authentication cost for G′ are defined
as follows. The node size NH of G′ is the number of its vertices. The degree size NL of G′ is the
sum of the in-degrees of its vertices, that is, NL =

∑

v∈G′ indeg(v).
The choise of these two components is justified as follows. Every update, query of verifica-

tion operation corresponds to some subgraph G′ of the hashing scheme G. Then, the node size
NH corresponds to the number of hash operations that are involved at some of the three parties
(source, directory or user) and the degree size NL corresponds to the total number of hash values
that participate as operands in these hash operations. Each cost parameter of the authentication
overhead for this operation depends linearly on NH and NL.

First consider the hashing overhead for some update or verification operation. Lemma 1 states
that for a string x of length `, the time complexity of the hash operation h(x) is of the form
T (`) = c1

⌊

`
D

⌋

+ c, where D, c1 and c are constants and D < N . Thus, considering a vertex
v in the hashing scheme G with indeg(v) = d and using the concatenation multivariate hash
function (Lemma 3 justifies this choice), we see that the time complexity for the hash operation
that corresponds to vertex v is of the form c + c′d for some new constant c′. For a subgraph G′

of G, the hashing overhead that corresponds to all the involved hash operations is of the form
cNH + c′NL. For the communication overhead of a query operation, we observe that in order the
user to compute the hash value that is stored at a vertex v of G′, exactly indeg(v)− 1 hash values
need to be sent by the directory. Thus, in total, NL − NH labels are needed. For the storage
overhead, clearly NH hash values are stored in the data structure at the source (the same holds for
the directory), where NH is the node size of G itself.

Using the above discussion we can express precisely the authentication overhead for any au-
thenticated data structure DS as follows. Let G be the hashing scheme of DS before an operation
or query. Any update operation U in DS generally changes G to GU . A node in GU is called a cost
node if the set of its predecessors in GU is different than the set of its predecessors in G, or if it is a
new node, or the set of data elements that are hashed at this node has changed. Let VU be the set of
all cost nodes in GU . Let G′ = (V, E) be the subgraph of GU that contains all nodes of GU that are
reachable in GU from nodes in VU . Then, the rehashing overhead is given by a linear combination of
the node size and the degree size of G′, that is, of formula c|V |+c′

∑

v∈G′ indeg(v) = cNH +c′NL (c
and c′ are constants, and NH , NL are the node size and the degree size of G′). Moreover, consider
a query Q. The answer of Q is a subset SQ of the the S that is stored in DS. Let VQ be the
set of nodes in G whose hash label depend on SQ. Let G′ = (V, E) be the subgraph of G that
contains all nodes in G that are reachable in G from nodes in VQ. The verification time is then a
quantity of the form c|V | + c′

∑

v∈G′ indeg(v) (with c, c′, NH , NL as before). The communication
cost is the difference

∑

v∈G′ indeg(v)−|V | = NL −NH . If G = (VG, EG), then the storage overhead
is clearly the number VG of nodes of G, i.e., the node size of G and the complete hashing overhead
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is c|VG| + c′
∑

v∈G indeg(v) = c|VG| + c′|EG| (here, the node size and the degree size of G are VG

and EG respectively).
For the rest of the paper, we focus our discussion on the dictionary problem. We analyze the

authentication cost for authenticated dictionaries.

4 The Dictionary Problem

We consider a dictionary S storing key-element pairs (k, e) that supports the following update
operations

• replace(k,e): replace the (existing in S) element of k with e;

• insert(k,e): inserts the (non existing in S) pair (k, e) in S;

• delete(k): deletes the (existing in S) pair that corresponds to k.

We are interested in authenticating answers to the following queries:

• contains(k): a yes/no answer about whether (k, ·) ∈ S or not;

• get(k): returns the (existing in S) element of k.

For the user part, we also define a new operation that corresponds to the verification of an answer
given by the directory: operation verify(k) verifies the answer received by the user to a query
contains(k) or get(k).

We give an example of an authentication solution for the static case (see Figure 4). A binary
tree is built on top of the key-element pairs. The hashing scheme is considered to be the tree itself
having directed edges from children to parent. A leaf u corresponding to (k, e) stores the hash value
L(u) = h(k, e) and an internal node v with children w1 and w2 stores L(v) = h(w1, w2). Here,
h denotes the concatenation 2-variate hash function. The answer authentication information for
query contains(k) or get(k) consists of the hash values of the siblings of the nodes in the path from
u to the root, where leaf u corresponds to key k. We assume that element e is part of the answer
authentication information for query contains(k).

L2 L3 L4 L5

L7 L8 L9

(k1, e1) (k2, e2) (k3, e3) (k4, e4) (k5, e5) (k6, e6)

L11 (signed digest)

L10

L1 L6

Figure 4: An example of a hashing scheme. Hash values of solid nodes and their left-right position
correspond to the answer authentication information for query get(k3).

Let D be a dictionary for data set S. In our model, a hashing scheme G is a directed acyclic
graph (DAG) that defines a systematic way to produce a digest of S.

The authentication overhead of hashing scheme G is characterized by the following parameters:

1. U(k): rehashing overhead due to the hashing operations and label recomputations needed to
be performed by the source or the directory for an update operation U on k; U can be one of
I (insert), D (delete) or R (replace);

2. V (k): verification time spent by the user for the verification operation V on k;
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3. Q(k): communication cost, i.e., number of labels that need to be sent to the user by the
directory as part of the answer authentication information for query Q on k; Q can be one of
(contains) C or (get) G;

4. S: storage overhead, i.e., number of labels that need to be stored in the data structure D by
the source and the directory.

5 The Limits of Authentication Though Hashing

Here, we study the limits of data authentication through hierarchical hashing for the dictionary
problem. For our results we define the concept of the authentication scheme which is used to
describe any authenticated dictionary.

The Authentication Scheme Model Let S be a set {x1, ..., xn} of n elements such that x1 ≤
x2 ≤ ... ≤ xn and let h be the concatenation multivariate hash function. An authentication scheme
for S is a triple Auth(G, n, k), where G = (V, E) is a directed acyclic graph (DAG) with n source
nodes and up to k sink nodes. G does not have parallel edges. Each source of G corresponds
to a unique element xi of S. Source nodes can be assigned elements of S in any possible way.
Each node v of G is associated with a label L(v). If si is the source node for element xi, then
L(si) = h(xi). If node v has predecessors u1, ..., ul, then L(v) = h(L(u1), ..., L(ul)), where the order
of nodes ui corresponds to some fixed topological order of G. Graph G has k distinguished nodes,
called signature nodes, which include the sinks of G. Thus, if k = 1, G has a unique sink node.

Let G′ be a weakly connected subgraph of G, i.e., a subgraph of T that is connected when one
ignores edge directions. We define the authentication cost of G′ as C(G′) =

∑

v∈G′(1 + indeg(v)),
where indeg(v) is the number of incoming edges of v.

Let s be a source node of G, Gs be the subgraph of G that is reachable from s, and π be a path
in G that connects node s with a signature node and has the minimum authentication cost. We
define the following cost parameters associated with s: update cost U(s) = C(Gs); verification cost
V(s) = C(π); and communication cost C(s) = V(s) − 2|π|.

Let Auth(G, n, k) be an authentication scheme. The update cost UG is the maximum update
cost of a source node of G; the verification cost VG is the maximum verification cost of a source
node of G and the communication cost CG is the communication cost that is associated with the
node of the maximum verification cost.

Authentication by Hashing vs. Search by Comparisons We fist prove the equivalence
between authentication by hashing and searching by comparisons on tree-based authentication
schemes.

Lemma 4 Let T be a single-sink tree and Auth(T, n, 1) be an authentication scheme on set S. Tree
T can be transformed into a search tree T ′ such that an element xi of S can be located in T ′ with
C(si) + 1 comparisons.

Proof: We reduce the authentication scheme Auth(T, n, 1) on a sorted sequence S to a search
tree T ′. Consider the authentication scheme Auth(n, T, 1) and any topological ordering of it. We
traverse the nodes in T in reverse topological order and as we encounter source nodes of T we assign
to them elements of S in increasing order. After elements are assigned to source nodes, we augment
T by performing the following key assignment to all nodes in T , using again the topological ordering
t(T ). Each source node is assigned as key the element that it stores. Each no source node v with
predecessor nodes u1, ..., ul is assigned keys K2, ..., Kl, where for 2 ≤ i ≤ l, Ki is the largest element
that has been assigned to the source nodes of the subtree in T having as root node ui. Graph T
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along with the assigned keys is a search tree T ′ for set S. For node v in the search path of xi in G
with cost 1 + dv, dv − 1 comparisons are performed if dv > 0, or one comparison otherwise. The
number of comparisons follows from the definition of the communication cost. 2

Theorem 5 Any authentication scheme Auth(T, n, 1) such that T is a tree has Ω(log n) update,
verification and communication costs.

Proof: It follows directly from Lemma 4 and the Ω(log n) lower bound on searching an ordered
sequence in the comparison model. Note that, since T is a directed tree its verification cost is equal
to its update cost. 2

Next, we show that trees have optimal authentication overhead among authentication DAGs.

Theorem 6 Let Auth(G, n, 1) be an authentication scheme. There exists an authentication scheme
Auth(T, n, 1) such that T is a tree and UT ≤UG, VT ≤VG, and CT ≤CG.

Proof: Fix a topological order t(G) of G. For source node s1 of G we find and mark the path π1

having the minimum authentication cost, where we use the topological order t(G) to search and
traverse G. Using t(G), we proceed by finding the minimum authentication cost path π2 of node
s2 of G and marking the traversing path, but we stop the search if a marked node is reached, i.e., a
node of path π1. We proceed as above with all nodes si and we stop the traversal of G at the first
marked node. At the end the marked subgraph is a tree T with and the authentication cost of any
si in T is equal to the minimum authentication cost in G. The optimality of the authentication
paths in T is proven with induction on n: optimality of the authentication cost for nodes s1, ..., si−1

guarantee the optimality of the authentication cost of si. 2

Finally, we show how signing more that one hash label affects the authentication cost. We have
that a hashing scheme with k signature nodes has minimum authentication cost when the roots of
k distinct trees are signed.

Lemma 7 Let AuthG(G, n, k) be an authentication scheme. There is an authentication scheme
AuthG(F, n, k) such that F is a forest and UF ≤UG, VF ≤VG, and CF ≤CG.

Proof: The proof is similar to the proof of Theorem 6. For i = 1, ..., n, we find and mark the
minimum verification paths π1, ..., πn in G from source nodes s1, ..., sn to a signature node or a
previously marked node in G. The resulting marked subgraph of G is a forest: no marked path
connecting two distinct signature nodes exists. 2

Theorem 8 Any authentication scheme Auth(G, n, k) has Ω(log n
k
) update, verification and com-

munication costs.

Proof: It follows from Theorems 5 and 6 and Lemma 7. 2

The above results apply to all authenticated dictionaries. This holds even if the authentication
schemes as defined: (i) model static dictionaries (ii) do not support authentication of negative
answers to the contain(k) query and (iii) use the concatenation hash function. It should be clear
that these do not limit the generality of lower bound results: the authentication overhead is always
increased when dynamic operations or authentication of negative answers to membership queries
are supported. Also, Lemma 3 justifies the use of the concatenation multivariate hash function.

12
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Authentication Cost for Tree Structures We now limit our study to hashing schemes with
tree structure. Let T be a directed towards its root tree that is the hashing scheme for a dictionary
D and let k be a key of D. Then with respect to k and in accordance with the authentication cost
measure defined in Section 1.1, we assign an authentication cost to each to update operations and
queries on k.

We define path πk to be the path in T from the node storing key k up to the single sink of T
and let C(πk) be the authentication cost of πk. C(πk) can be written as C(πk) = NH + NL, where
NH = |π| is the number of nodes in π and NL = indeg(T, π) is the number of the predecessor nodes
in G of the nodes of π. We call NH and NL, the hash path and hash size of k respectively. Both
NH and NL characterize the authentication overhead for operations on key k.

A commonly used technique for authenticating negative answers to a contains(k) query is to
include in the hash computation at the leaf of the tree that corresponds to key ki, key ki+1, i.e., by
storing at the leaf that corresponds to ki the hash value h(ki, ei, ki+1). In this way, any negative
answer for contains(k), with ki < k < ki+1, is authenticated by providing the proof of existence of
pair (ki, ki+1). We assume that this technique is used in our analysis. It is then the case than node
of two rather than one paths in T change hash values on an update operation. For instanse, an
update operation on key ki causes the recomputation of the two paths in T that start with hash
values (ki−1, ei−1, ki) and (ki, ei, ki+1). The two paths share a lot of nodes in general and one of
them is path πk. Let ρk be the extra path from a key k up to first node of πk, that is the portion
of the second path that does not belond to πk. The authentication cost of ρk is C(ρk).

Finally, for an update operation on k let Cost(k) be the set of cost nodes, and σk be the
subgraph of T that consists of nodes that are reachable from the nodes of Cost(k) in T but are
not nodes of πk or ρk. Let C(σk) the authentication cost of σk. C(σk) typically corresponds to the
rehashing cost for rebalancing the hashing scheme after an insertion or deletion.

Then, the authentication cost that is introduced by an update operation on k is C(πk) +
C(ρk) + C(σk) and the authentication cost introduced by a query is C(πk) = NH + NL. As we will
see, for both trees and skip lists, ρk and σk are on average subgraphs of constant authentication
cost and since we will be interenting in the logarithmic factor constants of the authentication
overhead we can ignore them. That is both update operations and queries have authentication cost
C(πk) = NH + NL. The communication cost Q(k) for a query is always NL −NH . We see that the
hash path and hash size characterize the authentication overhead.

We can then only calculate the rehashing overhead U(k) or the verification time V (k) that
corresponds to path πk. Recall that the hashing time for a string x is given by T (x) = c1g(|x|) + c,
where g(x) =

⌊

x
D

⌋

, D = 448 and c = c1 + c2. Let L be the size of a label and di be the degree of

13



www.manaraa.com

the ith node in path π. Then we have for V (k)

V (k) =

NH
∑

i=1

T (Li1‖Li2‖ . . . ‖Lidi
) +

NH
∑

i=1

T (Li1‖Li2‖ . . . ‖Lidi
)

=

NH
∑

i=1

[c1g(|Li1‖Li2‖ . . . ‖Lidi
|) + c]

=

NH
∑

i=1

c1g(diL) + cNH

=

NH
∑

i=1

c1

⌊

diL

D

⌋

+ cNH

≤ c1
NLL

D
+ cNH ,

and in general that U(k) ≥ V (k) + O(1). We see that both U(k) and V (k) are expressed as a
linear combination of the hash path and the hash size, so both parameters need to minimized when
possible. Finally, the storage overhead S is clearly equal to the number of nodes in T . In the sequel
we will assume that the parameters NH and NL are either the same for any key k (considering an
average case analysis for the data structure of interest) or that they correspond to the expected
values for any key k (for structures that use randomness as skip lists).

6 A New Skip List Authentication Scheme

In this section, we describe a new authentication scheme for authenticated dictionary based on skip
lists [21], the multi-way skip list scheme. Authenticated skip lists were introduced in [9]. We refer
to the standard scheme as the one described in that work and analyze it in Section 7. Based on the
idea of separating the hashing scheme from the actual data structure, we describe our new multi-
way skip list scheme based on the skip list and study its performance in terms of the authentication
costs NH and NL. That is, in our scheme the data structure is unchanged and only the hashing
scheme is appropriately designed. We show that our new scheme has low authentication cost and
how, using the equivalence between authentication through hashing and searching by comparison,
we get an new optimized skip list with an average search cost close to optimal. We also describe
an alternative scheme that achieves even better performance under certain assumptions.

6.1 Skip Lists and Bridges

We briefly describe the notation that we will use. A skip list is a set of lists L1, ..., Lh, where
L1 stores all the element of a set S of size n and, for each i, each of the elements of list Li is
independently chosen to be contained in Li+1 with some fixed probability p. Lists are viewed as
levels and we consider all elements of the same value that are stored in different levels to form a
tower. That is, a tower consists of nodes of lists that store the same element. The level of a tower
is the level of its top-most element. Each node of a tower has a forward pointer to the successor
element in the corresponding list and pointer to the element one level below it. A node of the skip
list is a plateau node if it is the top-most node of its tower. We introduce the notion of a bridge.
A bridge is a set of towers of the same level, where no higher tower is interfering them (i.e., the
plateau nodes of the towers are all reachable in a sequence using forward pointers). The bridge size
of a tower is the number of towers in the bridge that the tower belongs to . We now compute the
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expected bridge size of a tower t of level k. On average 1
p

towers are consecutive having the same

height, thus, the expected bridge size of a tower (of any level) is 1
p
. More formally, observe that if

Y is the size of (any) bridge, then Y ∼ G(p) and E[Y ] = 1
p
.

6.2 Multi-way Authenticated Skip List

We now describe our scheme, the multi-way authenticated skip list which can be viewed as a multi-
way extension of the authenticated version of the skip-list data structure. The new scheme is
constructed by separating the hashing scheme from the actual data structure, i.e., by defining the
hashing scheme independently from the data structure. In particular, the data structure itself stays
the same, but the hashing scheme G is now different from the data structure: a node in G generally
corresponds to more than one nodes of the skip list. Furthermore, the hash value (label) that
corresponds to a node of G is stored in some carefully chosen node of the skip list so that the query
answering overhead is kept low. In the sequel, we give the details of our new scheme, by describing
the hashing scheme G, how this is updated in insertions and deletions and how the hash values are
collected in answering a query.

Hashing Scheme The notion of a bridge is essential in the new scheme. For each bridge b in
the skip list, a corresponding hash value H(b) is computed. We call H(b) the hash of b. H(b) in
essence is computed by the hashes of all the child bridges that are contained under b and between
its left-most and right-most towers. We define the hashing scheme G in a recursive way: the hash
H(b) of a bridge b is defined from the hashes of the child bridges of b (see Figure 5).

The plateau towers of a tower t are the towers on its right whose plateau nodes can be reached
by t in one step using forward pointers. The hash of a bridge b is defined as follows. First, suppose
that the size of b is one, i.e., b is simply a tower T . Let t1, ..., tl be the plateau towers of T in
increasing order with respect to their level. Note that the level of tl is less than the level of T . If
plateau tower ti belongs in bridge bi, then let H(b1), ..., H(bl) be the corresponding bridge hashes.
Then we define H(b) to be H(b) = hS(h(xT , s(xT )), H(b1), ..., H(bl)), where xT is the element
stored in tower T and s(xT ) is its successor (element that is stored in the tower right to T ) and
hS is the sequential multivariate hash function. If the size of b is more than one, say k, then, let
T1, ..., Tk be the towers of b. For each such tower Ti with, say, l + 1 plateau towers, we consider
its, l lowest plateau towers ti1, ..., til (where, for i < k, tower Ti+1 is omitted from this sequence;
that is, Ti+1 is not considered to be a plateau tower of Ti). Let bi1, ..., bil be the child bridges that
ti1, ..., til belong in. We define H(Ti) to be the representative hash value of tower Ti. We define
H(Ti) = hS(h(xTi

, s(xTi
)), H(bi1), ..., H(bil)), implemented sequentially as above. Finally, we define

H(b) to be the hash value H(b) = hC(H(T1), ..., H(Tk)) implemented using concatenation. In this
way the complete hashing scheme G is defined recursively. The digest of the skip list is the hash of
the highest bridge, i.e., the bridge of size two that consists of the left-most and right-most towers
(see also Figure 6).

H(b)

T1 t31t22t12t11

H(T3)

H(b11)

H(b12)

H(b21)

b

H(T1)

t13 T2 t21 T3

H(b21)

H(T2)

H(b11)

t2 t3

b

H(b)

t1

H(b1)

H(b2)

H(b3)

T

H(b31)

Figure 5: Hashing scheme G: H(b) is recursively computed by the hashes of the child bridges.
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Figure 6: The hashing scheme G for multi-way authenticated skip list.

Storage Hash values in hashing scheme G described above are stored in such a way so that the
query answering overhead, i.e., the process of collecting the answer authentication information when
answering a query, is minimized. Let b be a bridge. If b consists of only one tower t and if t1, ..., tl are
the plateau towers of t that belong in bridges b1, ..., bl, then hash value hi = h(hi−1, H(bi)) is stored
at the node of the same level as tower ti, with value h1 = h(h(xt, s(xt)), H(b1)) is stored at the
node of the same level as tower t1. In particular, the hash of the bridge H(b) = hl = h(hl−1, H(bl))
is stored at the node of height as the level of tower bl. If b has size k, then for each of the k towers
of b we proceed as above in storing the hash values hij , 1 ≤ j < l where tower Ti has height l. The
only difference is that both the hash of the bridge H(b) and the representative hash values of all
the towers in b are stored in the top-left node of b.

Queries Answering queries is performed as normal by searching for an element in a skip list. All
needed hash values can be collected as the search is performed. In particular, by storing all the
representative labels of a bridge of size more than one at the top-left node of it, we ensure that all
the information that is needed to be part of the answer authentication information is present when
needed. Indeed, the entry node of a new bridge is its top-left node, so all the hash values needed
for the recomputation by the user of the hash value of the bridge are present at this node. We
only need to take care for one thing. If the i tower of bridge b is followed by the search procedure,
we need to omit the representative hash value H(Ti) of this tower from the answer authentication
information in order to save communication cost. This can be achieved by implementing the skip
list search using recursion and returning value i accordingly or by cashing this information and
performing a second pass.

Updates Any update operation of the skip list is performed as normal; recall that the actual
skip list is not changed at all. The only operations that need be performed is the recomputation
of the hash values that are affected by any change in the structure of the skip list. An insertion of
a tower of level k may separate up to k − 1 bridges and either creates a new bridge of size one or
just increases the size of a bridge by one. In any case, all the rehashing can be easily performed
by augmenting the insertion procedure. Similarly, a deletion of a tower of level k may merge up to
k− 1 bridges and either delete a bridge or decrease its size by one. Again, in one pass (the deletion
procedure) all the necessary rehashing operations can be performed.

Theorem 9 Let L(n) = log 1

p
n, where p is the probability with which an element at level k of the

skip list is copied in the list of level k+1. For any fixed element x in the skip list, the multi-way skip
list authentication scheme has the following expected performance: (i) E[NH ] ≤ 2(1−p)L(n)+O(1);

(ii) E[NL] ≤ (1 − p)(2p + 2 + 1−p2

p
)L(n) + O(1); (iii) E[S] ≤ n

p
.

16



www.manaraa.com

Proof: We consider traveling on the search path π of an element x backwards. We assume a worst
case analysis, where π reaches level L(n). We split π in two parts π1 and π2: the part of path π
that take us to level L(n) = log 1

p
n and the part of π that completes the backward search. We

then bound the expected value of the quantity (authentication cost) under consideration studying
separately the quantities that correspond to the subpaths π1 and π2. For the authentication costs
that correspond to π1, we assume an infinite skip list, that is no header tower is present.

For both authentication costs NH and NL, again, we consider the subcosts N1, N2 that corre-
spond to subpaths p1 and p2.

For the number of hash computations NH and N1, we proceed as follows. If Ck(t) counts
the authentication cost for element x when k upwards moves remain to be taken and we are
performing the tth step, then if we move up C t

k = X1 + Ct+1
k−1, otherwise (we move to the left)

Ct
k = X2 + Ct+1

k , where X1, X2 are 0-1 random variables that count if a hash computation is
added to the cost when we move up or left respectively. Now, Pr[X1 = 1] = p(1 − p), because
with probability 1 − p the node that the forward pointer points to is a plateau node and with
probability p the node that we move to is not a plateau node (otherwise we are at the top of a
bridge). Moreover, Pr[X2 = 1] = p+p(1−p), because with probability p we just leave a bridge and
with probability (1 − p) the bridge has size more that one. Using conditional expectation, we get
that E[Ck] = p(E[Ck−1] + E[X1]) + (1− p)(E[Ck] + E[X2]) and finally that E[Ck] = 2(1− p)k. So,
since N1 ≤prob CL(n)−1, we have that E[N1] ≤ 2(1 − p)L(n) + O(1). For N2, and using the same

upper bounds as in the proof of the standard scheme, we have that E[N2] ≤ 1
p

+ 1 = O(1). So,

E[NH ] ≤ 2(1 − p)L(n) + O(1).

For the number of hash labels NL and N1 we have that, if Ck(t) counts the authentication cost
for element x when k upwards moves remain to be taken and we are performing the tth step, then
if we move up Ct

k = X1 + Ct+1
k−1, otherwise (we move to the left) C t

k = X2 + Ct+1
k . Here X1 and X2

counts the number of hash labels that we have to add when moving up or left respectively. We have
that E[X1] = 2p(1 − p) because with probability p(1 − p) we have 2 hash labels while moving up.

Also E[X2] = p(2 + 1−p2

p
), because with probability p(1 − p) we have Y hash labels while moving

left and E[Y ] = 1−p2

p
and with probability p we have another two hash labels. Using conditional

expectation and putting everything together, E[Ck] = p(E[Ck−1]+E[X1])+(1−p)(E[Ck]+E[X2])

and E[CL(n)−1] = (1 − p)(2p + 2 + 1−p2

p
)L(n) + O(1). Once again E[N2] ≤ 1

p
+ 1. So,

E[NL] ≤ (1 − p)(2p + 2 +
1 − p2

p
)L(n) + O(1).

Finally, for the number of labels stored in the data structure we use the trivial bound of the total
number of elements in G, so S < n

p
. 2

From Lemma 4 and Theorem 9, we have a version of skip list with optimal expected number of
comparisons, up to an additive constant factor.

Theorem 10 There is a skip list version such that the expected number of comparisons for a fixed

element x is E[NL] − E[NH ] ≤ (1−p)(p2+1)

p log 1

p

log2 n + O(1), which is 1.25 log2 n + O(1) for p = 1
2 .

Proof Sketch: Follows from Lemma 4 and Theorem 9. The idea is that for a bridge of size k,
k − 1 (instead of k) comparisons are necessary for the search to go on. 2
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7 Analysis of Other Authentication Schemes

We now examine the authentication cost for authenticated dictionaries based on using balanced
search trees, where the authentication scheme G is defined in the straightforward way, by directing
towards its root the search tree. We then analyze the authentication cost of the authenticated
dictionary based on skip list appeared in [9].

Balanced Trees We focus on the red-black trees and (a, b)-trees that implement multi-way tree
structures. First we consider the data organization issue, i.e., whether it is better data items to
be stored in the internal nodes of the tree or in the leaves. A tree is node-oriented if it stores
data elements in internal nodes and leaf-oriented if it stores data elements in the leaves. In terms
of authentication cost, leaf organizations seem to be preferable in general. Each node-oriented
Tn tree has a leaf-oriented counterpart Tl which has Ln more nodes, where Ln is the number of
leaves in Tn. Even though, paths in Tl are now longer, the authentication cost in Tn is on average
greater, since the elements that are stored in interval nodes of the tree are also hashed. Even when
elements have short binary length, given that on average a search path is closer to the leaves of Tn,
the authentication extra overhead is big. The overhead increases when elements have large binary
lengths. Hashing once more large elements to a smaller hash value, but thus, increasing the storage
overhead, may help depending on the relative size of the elements.

Considering leaf-oriented trees, another issue is the extra authentication overhead that is added
when update operations (insertions/deletions) that restructure the tree and then rebalancing oper-
ations are performed. It turns out that for both operations the overhead is constant for red-black
trees and on average constant for (a, b)-trees. This authentication cost is proportional to the num-
ber of specific type of rotations for red-black trees and of split operations in (a, b)-trees. Red-black
trees seem to be more efficient than (a, b)-tress is this respect. Red-black trees have also the ad-
vantage of achieving close to theoretically optimal average performance: for randomly built trees,
about 1.002 log n comparisons are performed for a search operation [23].

Skip List We now analyze the “standard hashing scheme” for skip lists described in [9]. Figure 7
illustrates the hashing scheme, where only the hash computations are shown and not the actual
hash values that are stored in the data structure. We call this hashing scheme as standard skip list
scheme.

Figure 7: The standard hashing scheme for authenticated skip lists [9].

Theorem 11 Let L(n) = log 1

p
n, where p is the probability with which an element at level k of the

skip list is copied in the list of level k + 1. For any fixed element x in the skip list, the standard

hashing scheme for skip lists has the following expected performance: E[NH ] ≤ 1−p2

p
L(n) + O(1),

E[NL] ≤ 2(1−p2)
p

L(n) + O(1), and E[S] = n
p
.

Proof: We use ideas and techniques as in [21, 22]. Let p be the probability with which an element at
level k of the skip list is copied in the list of level k+1. Let L(n) = log 1

p
n. Consider the search path
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in a backward fashion. Assuming a worst case scenario, suppose that the search path π from x up to
the top node of the header reaches and possibly exceeds level L(n). Then NH ≤prob N1 + N2 + N3,
where N1 is the number of hash computations that correspond to the subpath of π until the search
path reaches level L(n), N2 is the number of hash computations that correspond to the leftward
moves in the search after level L(n) is reached and N3 is the number of hash computations that
correspond to the upward moves in the search after level L(n) is reached. Using ideas as in [22],
we can compute the expected values for N1, N2 and N3.

Assume that we have a skip list of infinite size; that is, in our backward search from element
x up to level L(n) we never reach the header of the skip list. Let C t

k be the random variable that
equals the authentication cost under consideration (number of hash computations) for element x
when k upwards moves remain to be taken and we are performing the tth step. Then, at the tth
step, if we move up Ct

k = Xk−1 + Ct+1
k−1, where Xi is a 0-1 random variable that is 1 when the

forward pointer of the new node in the skip list leads to a plateau element, otherwise (we move to
the left) Ct

k = 1 + Ct+1
k . We first observe that since we have an infinite skip list, C t

k ∼ Ct+i
k ∼ Ck

for any i > 0 and that Xi ∼ Bern(1 − p). Thus, using conditional expectation

E[Ck] = E[E[Ck|move]]

= E[p(Xk−1 + Ck−1) + (1 − p)(1 + Ck)]

= p(E[Xk−1] + E[Ck−1]) + (1 − p)(1 + E[Ck])

=
1 − p2

p
k

Since, N1 ≤prob CL(n)−1, we get that E[N1] ≤ 1−p2

p
(L(n) − 1).

On the other hand, N2 ≤prob Bin(n, 1
np

); the number of hash computations that correspond
to leftward moves at level L(n) or higher is exactly the number of these leftward moves, with
the latter being less than the number Y of towers of the skip list with level L(n) or higher. But
Y ∼ Bin(n, 1

np
), since with probability pL(n)−1 = 1

np
a tower has level L(n) or higher. Thus,

E[N2] ≤ 1
p
.

For N3 ≤prob Bin(G(1−p), 1−p); the number of hash computations that correspond to upward
moves at level L(n) or higher is less than the number Y of hash computations that correspond to
moving upwards in the highest skip list towers starting at level L(n). Y ∼ Bin(G(1 − p), 1 − p),
because the length of of this path is geometrically distributed with parameter 1 − p and the we
add one hash computation when, with probability 1−p, the forward node is a plateau node. Thus,

E[N2] ≤ 1 and, finally, E[NH ] ≤ 1−p2

p
(L(n) − 1) + 1

p
+ 1.

Finally, note that NL = 2NH and that S is the exactly the storage of the skip list, thus E[S] = n
p
.

2

8 Comparison

Table 1 summarizes our main results on the authentication overhead of hashing schemes for au-
thenticated dictionaries. To simplify the comparison, we choose parameter p = 1

2 for the skip lists.
All numbers correspond to expected values of the corresponding cost parameters where the lower
order additive terms are omitted.

We have conducted experiments that measure the space overhead S and the cost parameters
NH and NL for authenticated dictionaries based on red-black trees, standard skip lists and multi-
way slip lists. Recall that S is the number of hash values that are stored in the data structure and
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NH NL C S

red-black tree log n 2 log n log n 2n

standard skip list 1.5 log n 3 log n 1.5 log n 2n

multi-way skip list log n 2.25 log n 1.25 log n 2n

Table 1: Theoretical comparison of the schemes for p = 0.5. NH : number of hash computations,
NL: number of hash labels that are hashed, C: communication cost (number of hash labels), S:
storage (number of hash labels). Recall that hashing time is T ≤ c1

L
448NL + cNH (L = 160 or

L = 128). All numbers correspond to expected values of the corresponding cost parameters where
the lower order additive terms are omitted.

correspond to the number of nodes of the associated hashing scheme G. Also, recall that for a given
element x of the dictionary, NH and NL are respectively the number of hash computations and the
number of hash values that participate in these computations needed for a verification process on
a query about x; they correspond respectively to the number of nodes and the sum of their degrees
of the path in G from element x up to the single sink of G.

For the experiments, a leaf-oriented data organization for red-black trees was chosen. This
choice is justified by the discussion of Section 7, but it also leads to a better comparison, given the
fact that skip lists are also “node-oriented” data structures. Also, for the skip list schemes, the
value p = 1

2 was used as the probability with which a node of the skip list at level i is copied to
level i + 1.

Storage Overhead S Figure 8 shows the storage overhead S for the three schemes as a function
of the data set size n. For red-black trees, the storage overhead is always exactly 2n−1, since there
are exactly 2n− 1 nodes in the tree and each node is storing a hash value. This value for red-black
trees is compared with the average storage overhead that each of the skip list schemes achieves. In
Figure 8, the value of the storage overhead S for each skip list scheme correspond to an average
of 20 different realizations of this scheme. We computed these values for dictionaries of up to 1.5
million elements.

From Figure 8, we see that the storage overhead for the standard skip list scheme is close to
expected value n

p
of the total storage of the skip list data structure. Instead, the multi-way skip

list scheme achieves a much lower storage overhead, which for p = 1
2 , is close to 1.41n. Note that

in Theorem 9 (and also in Table 1) the stated expected value of S for our new skip list scheme is
clearly an overestimate. In fact, the hashing scheme G of the multi-way skip list saves a significant
amount to hash values. To see why, consider a tower t of level k. In the standard skip list exactly
k hash values are stored in t. We define the plateau degree d of t to be the number of plateau nodes
that are reachable in one step from nodes of t. In the multi-way skip list, if t belongs in a bridge on
size 1, then only d ≤ k hash values are stored; otherwise, for each bridge of size b > 1, we save b−2
hash values. We conclude that the multi-way skip list is superior in terms of storage overhead.

Authentication Cost Finally, Figures 9 and 10 show the authentication cost for the three
authentication schemes in terms of the cost measures NH and NL, where we computed the total
average authentication cost, that is, the average values N̄H and N̄L of NH and NL, over all elements
in the dictionary. In essence, values N̄H and N̄L correspond to average path authentication cost of
the authenticated data structures that we study. For skip lists we computed the average of N̄H

and N̄L over a series of 20 realizations. We computed the authentication cost for dictionaries of up
to 1.75 million elements.
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Figure 8: Storage Overhead S for authenticated dictionaries based on Standard skip list, Multi-
way skip list and Red-Black trees. Multi-way skip lists use significantly less storage overhead. For
multi-way skip lists, experimentally we have that S ' 1.41n; the value 2n in Table 1 is only a crude
overestimation.

From Figure 9, we can see that with respect to cost N̄H , the multi-way skip list and the red-black
tree achieve cost close to the theoretical value of log n + O(1). They both have good performance.
Figure 10 suggests that with respect to cost N̄L in practice red-black trees perform better. Indeed,
the multi-way skip list scheme achieve values for N̄L that are away from 2 log n. The reason is
that. since N̄L counts the average path authentication cost, elements under fat bridges they all
contribute a high cost to NL. Also the corresponding constant factor seem to be larger, i.e., in
formula 2 log n + c, c is larger for multi-way skip lists.
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